Main

Monday, 26 November 2012

cs502 quize 1st-12-11-2012


MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     88
sec(s)    
Question # 1 of 10 ( Start time: 10:05:34 PM )     Total Marks: 1
The recurrence relation of Tower of Hanoi is given below T(n)={1 if n=1 and 2T(n-1) if n >1 In order to move a tower of 5 rings from one peg to another, how many ring moves are required?
Select correct option:
    16
    10
    32
    31

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     80
sec(s)    
Question # 2 of 10 ( Start time: 10:06:00 PM )     Total Marks: 1
In the analysis of Selection algorithm, we eliminate a constant fraction of the array with each phase; we get the convergent _______________ series in the analysis,
Select correct option:
    linear
    arithmetic
    geometric
    exponent

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     89
sec(s)    
Question # 3 of 10 ( Start time: 10:06:16 PM )     Total Marks: 1
One of the clever aspects of heaps is that they can be stored in arrays without using any _______________.
Select correct option:
    pointers
    constants
    variables
    functions

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     47
sec(s)    
Question # 4 of 10 ( Start time: 10:06:58 PM )     Total Marks: 1
Analysis of Selection algorithm ends up with,
Select correct option:
    T(n)
    T(1 / 1 + n)
    T(n / 2)
    T((n / 2) + n)

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     80
sec(s)    
Question # 5 of 10 ( Start time: 10:07:47 PM )     Total Marks: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
    2^(h+1) – 1
    2 * (h+1) – 1
    2 * (h+1)
    ((h+1) ^ 2) – 1

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     75
sec(s)    
Question # 6 of 10 ( Start time: 10:08:01 PM )     Total Marks: 1
For the heap sort we store the tree nodes in
Select correct option:
    level-order traversal
    in-order traversal
    pre-order traversal
    post-order traversal

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     76
sec(s)    
Question # 7 of 10 ( Start time: 10:08:25 PM )     Total Marks: 1
The analysis of Selection algorithm shows the total running time is indeed ________in n,
Select correct option:
    arithmetic
    geometric
    linear
    orthogonal

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     89
sec(s)    
Question # 8 of 10 ( Start time: 10:09:53 PM )     Total Marks: 1
The sieve technique works in ___________ as follows
Select correct option:
    phases
    numbers
    integers
    routines

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     89
sec(s)    
Question # 9 of 10 ( Start time: 10:10:36 PM )     Total Marks: 1
In Sieve Technique we do not know which item is of interest
Select correct option:
    True
    False

MC100400431 : Zaheer Abbas



Quiz Start Time: 10:05 PM    
Time Left     87
sec(s)    
Question # 10 of 10 ( Start time: 10:10:55 PM )     Total Marks: 1
The sieve technique is a special case, where the number of sub problems is just
Select correct option:
    5
    many
    1
    few

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 1 of 10 ( Start time: 10:11:54 PM )     Total Marks: 1
In which order we can sort?
Select correct option:
    increasing order only
    decreasing order only
    increasing order or decreasing order
    both at the same time

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 2 of 10 ( Start time: 10:13:07 PM )     Total Marks: 1
How much time merge sort takes for an array of numbers?
Select correct option:
    T(n^2)
    T(n)
    T( log n)
    T(n log n)

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 3 of 10 ( Start time: 10:14:35 PM )     Total Marks: 1
For the Sieve Technique we take time
Select correct option:
    T(nk)
    T(n / 3)
    n^2
    n/3

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 4 of 10 ( Start time: 10:14:52 PM )     Total Marks: 1
Divide-and-conquer as breaking the problem into a small number of
Select correct option:
    pivot
    Sieve
    smaller sub problems
    Selection

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 5 of 10 ( Start time: 10:15:08 PM )     Total Marks: 1
How many elements do we eliminate in each time for the Analysis of Selection algorithm?
Select correct option:
    n / 2 elements
    (n / 2) + n elements
    n / 4 elements
    2 n elements

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     88
sec(s)    
Question # 6 of 10 ( Start time: 10:16:07 PM )     Total Marks: 1
Slow sorting algorithms run in,
Select correct option:
    T(n^2)
    T(n)
    T( log n)
    T(n log n)

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 7 of 10 ( Start time: 10:17:10 PM )     Total Marks: 1
Sieve Technique applies to problems where we are interested in finding a single item from a larger set of _____________
Select correct option:
    n items
    phases
    pointers
    constant

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     90
sec(s)    
Question # 8 of 10 ( Start time: 10:17:28 PM )     Total Marks: 1
The number of nodes in a complete binary tree of height h is
Select correct option:
    2^(h+1) – 1
    2 * (h+1) – 1
    2 * (h+1)
    ((h+1) ^ 2) – 1

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 9 of 10 ( Start time: 10:17:46 PM )     Total Marks: 1
The sieve technique works in ___________ as follows
Select correct option:
    phases
    numbers
    integers
    routines

MC080200323 : Muhammad Zahid



Quiz Start Time: 10:11 PM    
Time Left     89
sec(s)    
Question # 10 of 10 ( Start time: 10:18:06 PM )     Total Marks: 1
In the analysis of Selection algorithm, we make a number of passes, in fact it could be as many as,
Select correct option:
    T(n)
    T(n / 2)
    log n
    n / 2 + n / 4

No comments:

Post a Comment